

Programming and Problem

Solving (CoE132)

References:

- C++ How to Program 8th Edition
by Paul Deitel , Harvey Deitel ,
Publisher Prentice Hall

- C++: The Complete Reference 4th Edition
by Herbert Schildt
Publisher Mcgraw- Hill Education

Problem- Solving Algorithms

 Introduction
 An algorithm is a computational procedure consisting of a set of

instructions, that takes some value or set of values, as input, and produces

some value or set of values, as output.

Characteristics Of An Algorithm
 What makes an algorithm an algorithm? There are four essential

properties of an algorithm.

1. Each step of an algorithm must be exact. An algorithm must be

exactly and clearly described.

2. An algorithm must terminate. The purpose of an algorithm is to

solve a problem. If the program does not stop when executed, we will

not be able to get any result from it. Therefore, an algorithm must

contain a finite number of steps in its execution.

3. An algorithm must be effective. An algorithm must provide the

correct answer to the problem.

4. An algorithm must be general. This means that it must solve every

instance of the problem. For example, a program that computes the

area of a rectangle should work on all possible dimensions of the

rectangle, within the limits of the programming language and the

machine.

 Using Flow Chart To Symbolize Algorithm
 Since the flows of computational paths are represented as a picture, it

is called a flow chart. Let us start with an example. Suppose we have to

find the sum and also the maximum of two numbers. First the two

numbers have to be received and kept in two places, under two names.

Then the sum of them is to be found and printed. Then depending on

which one is bigger, a number is to be printed. In the flow chart, each

shape has a particular meaning.

In the following flow chart, the first block represents the start point of the

flow chart, the second block is to read the values of variables A and B.

The rectangle used to calculate addition, subtracting, multiplying…….

Here A and B are added and the sum is saved in C.

Printing process is an output, so it putted in parallelogram shape. Then

the condition is placed to test if A>B. The right option of the condition is

always (yes) and the left is (No). End block used to exit the flow chart.

 Implementation of strategies for algorithms

Execution

Implementation

Design

Analysis

Problem

Problem

Specification

Algorithm

Program

Solution

Debugging Strategies
A debugger allows the programmer, to interact and inspect the running

program, making it possible to trace the flow of execution and track

down the problems.

For example if we forgot to put a semicolon(;) after return statement in

the following programming section:
 1 int main()

 2 {

 3 return 0

 4 }

Your compiler should generate an error something like…

\Ali.cpp(4) : error C2143: syntax error : missing ';' before '}'

 \main.cpp(4) The error is in the file Ali.cpp line 4

error C2143: The compiler specific error code
syntax error : Messed up some syntax

missing ‘;’ before ‘}’ There’s a missing semi-colon before a closing

bracket

The following general strategies will reduce the time that debugging

takes in the process:

• Minimize Problems by Avoiding Copy-Paste Syndrome.

• Make Big Problems Found Late Small Problems Found Early

• Check Your Helper Functions

• Make sure you know what your program is doing

 Decomposition
large complex problems into kingbreais a technique for Decomposition

There are different types .problem)-(sub a series of smaller related problems

to solve problems: of decomposition defined

• structured programming : breaks a process down into well-defined

steps.

• Structured analysis: breaks down a software system from the

system context level to system functions and data entity.

• Object-oriented decomposition: breaks a large system down into

increasingly smaller classes or objects that are responsible for

some part of the problem domain.

 The figure above shows a general representation of decomposition

concept. The first block is the main process, which contain the three blocks

1,2 and 3. Block 3 contains two other blocks 1 and 2. It is easy to

programmer now to solve the problem starting with smaller problems 1 and

2 of block 3 reaching to the main block. This method is called Top-Down

planning.

