Programming and Problem
Solving (CoE132)

Course Description:

The course Indicate some reasons for studying programming fundamentals, covers the basics of
programming and the “C++" programming language, including syntax, fundamental data
structures. algorithms and basic problem-solving, control structures, string manipulation and list
processing. concepts of executive programs.

Course Topics:

An introduction to programming fundamentals: topics. variables. data types, and
operations. Programming paradigms (Functional, Procedural, Object-oricnted, and Event-
Driven),

Problem-solving Algorithms: Problem-solving strategies and process, Implementation
strategies for algorithms, Debugging strategies, the concept and properties of algorithms,
structured decomposition

Programming in C++: Basic syntax and semantics, Variables. types, expressions,
assignment, Mathematical functions, logical and bitwise and arithmetic operations,
Simple 1/0, Functions and parameter passing, procedural programming. Encapsulation
and information-hiding Separation of behavior and implementation.

Control structures: Conditional and iterative control structures, loops. sequencing,
selection, and iteration functions.

Basic Data Structures: Primitive types, Arrays, Strings and string processing, Records,
stack, and heap allocation,

Structure programming: static and dynamic structure programming.

Recursion: Recursive mathematical functions, Divide-and-conquer strategics, Recursive
backtracking, Implementation of recursion in C++,

References:

- C++ How to Program 8th Edition
by Paul Deitel , Harvey Deitel ,
Publisher Prentice Hall

- C++: The Complete Reference 4™ Edition
by Herbert Schildt
Publisher Mcgraw- Hill Education

Problem- Solving Algorithms

Introduction

An algorithm 1is a computational procedure consisting of a set of
instructions, that takes some value or set of values, as input, and produces
some value or set of values, as output.

Input |::> Algorithm I::> Output

Characteristics Of An Algorithm
What makes an algorithm an algorithm? There are four essential
properties of an algorithm.

1.

2.

Each step of an algorithm must be exact. An algorithm must be
exactly and clearly described.

An algorithm must terminate. The purpose of an algorithm is to
solve a problem. If the program does not stop when executed, we will
not be able to get any result from it. Therefore, an algorithm must
contain a finite number of steps in its execution.

. An algorithm must be effective. An algorithm must provide the

correct answer to the problem.

. An algorithm must be general. This means that it must solve every

instance of the problem. For example, a program that computes the
area of a rectangle should work on all possible dimensions of the
rectangle, within the limits of the programming language and the
machine.

Using Flow Chart To Symbolize Algorithm

Since the flows of computational paths are represented as a picture, it

is called a flow chart. Let us start with an example. Suppose we have to
find the sum and also the maximum of two numbers. First the two
numbers have to be received and kept in two places, under two names.
Then the sum of them is to be found and printed. Then depending on
which one is bigger, a number is to be printed. In the flow chart, each
shape has a particular meaning.

O L/

Start, End Input, Output
Calculations Decision
— O
Direction of control flow Connector

In the following flow chart, the first block represents the start point of the
flow chart, the second block is to read the values of variables A and B.
The rectangle used to calculate addition, subtracting, multiplying.......
Here A and B are added and the sum is saved in C.

Printing process is an output, so it putted in parallelogram shape. Then
the condition is placed to test if A>B. The right option of the condition is
always (yes) and the left is (No). End block used to exit the flow chart.

Implementation of strategies for algorithms

Programs are created faster and quickly. To create efficient and effective program, the following
procedure has to be followed. They are

Understand the Problem: Collect the problem to generate a program.

Analyze the Problem: Analyze the various steps of solving a problem.

Design the Problem: Design the problem by creating flow chart and writing algorithm.
Code the Program: Create coding by using proper programming language.

Test and Debug the Program: Use proper testing methods and check the program and debug
the errors.

Complete the Documentation: Create documentation for all the details about the program. For
instance, the analysis data, design data, source code, testing details etc., has to be
maintained.

Maintain the Program: Create the steps for modifying program to remove previously detected
errors etc.

{ Problem

\ Analysis

Problem
Specification

\ Design

{ Algorithm

\ mplementation

{ Program

\Execution

{ Solution]

Debugging Strategies
A debugger allows the programmer, to interact and inspect the running
program, making it possible to trace the flow of execution and track
down the problems.
For example if we forgot to put a semicolon(;) after return statement in

the following programming section:
1 int main ()

2 {

3 return O

4}
Your compiler should generate an error something like...
\Ali.cpp(4) : error C2143: syntax error : missing ';' before '}'

\main.cpp (4)| The error is in the file Ali.cpp line 4

error c2143:| The compiler specific error code

syntax error : Messed up some syntax

missing ‘;’ before ‘}’| There’s a missing semi-colon before a closing
bracket

The following general strategies will reduce the time that debugging
takes in the process:
* Minimize Problems by Avoiding Copy-Paste Syndrome.
* Make Big Problems Found Late Small Problems Found Early
e Check Your Helper Functions
* Make sure you know what your program is doing
Decomposition
Decomposition is a technique for breaking large complex problems into
a series of smaller related problems (sub-problem). There are different types
of decomposition defined to solve problems:
* structured programming : breaks a process down into well-defined
steps.
» Structured analysis: breaks down a software system from the
system context level to system functions and data entity.
* Object-oriented decomposition: breaks a large system down into
increasingly smaller classes or objects that are responsible for
some part of the problem domain.

‘J Drag thet witle hanidles 10 changs
| 7 thi i o the et Bluck

The figure above shows a general representation of decomposition
concept. The first block is the main process, which contain the three blocks
1,2 and 3. Block 3 contains two other blocks 1 and 2. It is easy to
programmer now to solve the problem starting with smaller problems 1 and
2 of block 3 reaching to the main block. This method is called Top-Down
planning.

